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Extreme weather events in 
Europe
Preparing for climate change adaptation: an update on 
EASAC’s 2013 study

1. Introduction

EASAC report number 22 (EASAC, 2013) examined trends in extreme weather 
within Europe. That report was published because, from an economic perspective, 
risks are not just through the change in the mean of climate variables such as 
temperature, precipitation or wind, or in derived variables like storm surge or 
water runoff, but also the changes in their extremes. As a result, that study 
looked at trends in the specific extremes of heat and cold, precipitation, storms, 
winds and surges, and drought. The report found evidence for overall increases 
in the frequency and economic costs of extreme events, which emphasised the 
importance of society adapting its future planning to allow for these new extremes.

In 2017, members of the original expert group, under the auspices of the 
Norwegian Academy of Sciences and Letters and the Norwegian Meteorological 
Institute, updated some of the statistics on which the original report was based. 
There has also been more recent evidence on some of the underlying drivers, which 
include weakening of the Atlantic Meridional Overturning Circulation (AMOC) 
and other phenomena such as a weakening and meandering jet stream. This short 
addendum to our earlier report presents these findings, which update and extend 
the previous analysis and confirm the conclusions in the original report. 

2. Quantitative update

The original report included a figure (Figure 2.1 in EASAC, 2013) on the number of 
natural catastrophes worldwide for the period 1980–2012. This has been updated 
with 4 years’ additional data and is shown in Figure 1 on the next page. As with the 
original report, these data are not peer-reviewed.

The updated figures show a continuation in the trends previously observed 
whereby climate-related extreme events are rising, with particularly sharp rises 
in hydrological events. However, such trends need to take into account socio-
economic developments that influence exposure to and reporting of natural 
hazards that result from climate variability. As far as reporting is concerned, this has 
improved through the use of the Internet, and smaller events in particular are better 
recorded today than they were 30 years ago. This effect accounts for part of the 
trend in increasing numbers of loss events. However, trends in reporting are unlikely 
to have any significant impact on the loss amount trend, since annual losses are 
dominated by the major loss events, which have always been recorded.

From the economic perspective, assessing past loss events according to today’s 
economic standards requires two adjustments: firstly, adjusting the costs of the 
events to today’s money; and secondly, assessing what damage that event would 
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have caused today (taking into account changes in 
infrastructure vulnerability, etc.). 

The first adjustment merely involves applying inflation 
to the historically determined loss data. This can use 
an established price index, which should represent the 
actual development of prices in the region in question 
and be based on the currency of the country concerned.

The second adjustment needs to take into account 
changes in the exposed assets and their vulnerability, 
which involves assessing the effects of development 
on the values in the area affected. Such an adjustment 
is known as normalisation (Eichner et al., 2015). Such 
data are not available for all losses worldwide, but 
two examples of trends that have been normalised are 
shown in Figure 2: for losses due to thunderstorms in 
North America and for flood losses in Europe. Whereas 
there are meteorological reasons for the increase in 
the normalised losses from severe thunderstorms, 
protection measures that have been implemented 
must also be taken into account in explaining the near-
static trend in flood losses (Eichner et al., 2015).

A second figure in the original report (Figure 2.4; 
updated in Figure 3 below) showed trends in large 
European floods. As pointed out in that report, severity 
class 1 includes large flood events, often causing 
significant human and economic damage, with an 
estimated (commonly from news reports) mean return 

period (recurrence interval) of the order of 10–20 years. 
Severity class 1.5 contains very large events whose 
return period is greater than 20 years but less than 100 
years. Finally, severity class 2 includes truly extreme 
events, with an estimated return period equal to or 
greater than 100 years. Flood magnitude is the product 
of duration in days, severity as given above and the area 
affected in square kilometres. It is given on a logarithmic 
scale, similar to the Richter scale for earthquakes. Flood 
magnitudes of 7, 8 or 9 represent very large events.

The spatial distribution of large floods in Europe can 
also be shown as in Figure 4 over the entire 32-year time 
interval (1985–2016) for which records are available. 

3. Other recent findings

EASAC’s original report (EASAC, 2013, page 6) also 
mentioned a weakening of the AMOC and amplified 
Arctic warming influencing the behaviour of the jet 
stream as potential sources of future disruptions in 
weather patterns. We thus include a brief summary of 
recent findings on these aspects.

3.1. AMOC (Gulf Stream)

A recent review by McCarthy et al. (2017) assessed 
the overall evidence on trends in the AMOC against 
the predictions that it will decline in the 21st century 
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in response to a changing climate1. There is consensus 
on the forces driving this (warming and increased 
precipitation in the high latitudes is predicted to 
increase the stability of the water column and inhibit 
the formation of the deep, cold branch of the AMOC), 
but the magnitude of decline varies widely between 
models. Moreover, Hansen et al. (2016) and Rahmstorf 
et al. (2015) have suggested that ongoing melting in 
the Arctic could provide a sufficient perturbation to 
the formation of the deep, cold branch of the AMOC 
to make a contemporary shutdown of the AMOC 
possible, with dramatic climate consequences (although 
at present, such an impact of high latitude melt on the 
AMOC has not been detected (Böning et al., 2016)).

With potentially substantial implications for the 
climate of Northwest Europe, it is clearly desirable 
to quantify this risk further. Unfortunately, historical 
data on the flows of the AMOC are limited but in 
2004, direct observations of ocean heat transport and 
the AMOC at key locations started with the UK-led 
RAPID array, which directly measures ocean transport 
across 26.5º N in the North Atlantic (McCarthy et al., 
2015). This has provided data on the AMOC’s seasonal 
and decadal variability, including a 30% drop in the 
strength of the AMOC in 2009–10. McCarthy et al. 
(2017) note that much of the inter-annual and shorter-
term variability recorded seems to have been wind 
driven and is consistent with climate models.
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Figure 2 Nominal and normalised annual losses from severe thunderstorms in North America (left) and flood losses in Europe 
(right). 
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Figure 3. Number of large floods of severity ≥1.5 and magnitude ≥5 in Europe each year during 1985–2016, based on 
Dartmouth Flood Observatory (USA) records (from Kundzewicz et al., 2017).

1The IPCC (2013) predicted that an AMOC slowdown is ‘very likely’ (90–100% probability) over the coming century in response to human-
made climate change, but that “It also remains very unlikely that the AMOC will undergo an abrupt transition or collapse in the 21st 
century for the scenarios considered.”
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Studies before the establishment of the RAPID array 
had already suggested a decline of around 30% in the 
strength of the AMOC over 50 years (Bryden  
et al., 2005), but this had been based on very limited 
data. However, the increased quality of observations 
in recent work (Smeed et al., 2014) provides much 
more confidence in the observed multi-year decline 
since the mid-2000s. This is also supported by data on 
Labrador Sea density changes (Robson et al., 2014). 
Together with a substantial cooling of the subpolar 
North Atlantic, McCarthy et al. (2017) note that there 
is gathering evidence of an emerging negative phase 
of the Atlantic multi-decade variability2, driven by a 
declining AMOC.

A major point of debate remains whether the AMOC 
will just decline or could switch ‘off’ entirely with 
substantial implications for Northwest Europe’s 
climate. Most earlier climate models did not support 
stable ‘off’ states, but more complex models including 
the influence of increased Arctic melting (see, for 
example, Böning et al., 2016; Hansen et al., 2016) 
suggest that the AMOC could have stable ‘on’ and 
‘off’ states. A critical point of uncertainty is the 
net flow of freshwater across the Atlantic. Since 
measuring precipitation and river flows for this vast 
area is difficult, it is more realistic to infer from salinity 
gradients, which can be measured easily from ships. 
Many models predicting a resilient AMOC do not 
match such observed salinity distributions, and Liu 
et al. (2016) investigated the sensitivity of AMOC 

future forecasts to this uncertainty. Models on the 
AMOC’s response to a doubling of atmospheric CO2 
levels (Figure 5) showed that, when their climate 
model showing a resilient AMOC was adjusted to a 
freshwater flow that matched salinity observations, 
the AMOC did break down, which would lead to 
cooling of the land masses in Greenland, Iceland, UK 
and Scandinavia of up to 9 °C.

The second uncertainty arises from the potential 
influence of Greenland’s ice cap melt. Bakker et al. (2016) 
found in their model that, with the IPCC high-emissions 
scenario (RCP8.5 scenario) and taking into account 
Greenland meltwater, the Gulf Stream system weakens 
by 37% (by 2100) and continues to fall by 74% by 
2290–2300. Another study by Böning  (2016) has 
also indicated that meltwater from Greenland is likely to 
weaken the AMOC considerably within a few decades.

Overall, while the decline in the AMOC has been 
confirmed, it is still not possible to resolve considerable 
uncertainties on the rate and magnitude of possible 
future changes. Recent evidence questioning the long-
term stability of the AMOC makes it important to use 
the data emerging from the RAPID array and other 
sources to improve and validate climate models, in 
order to provide a more reliable forecast of impacts of 
global warming on the AMOC.

3.2. Polar amplification and the jet stream

Evidence on polar amplification and the potential 
implications for the jet stream have been reviewed by 
the US National Academy of Sciences (NRC, 2016). 
They noted studies that had indicated influences of 
sea-ice change on large-scale atmospheric dynamics, 
which some had linked to an amplified jet stream and 
cold winters in middle latitudes (Francis and Vavrus, 
2012, 2015). However, NRC (2016) concluded that 
any such changes were not yet detectable above 
natural variability (Barnes et al., 2014). Since then, 
however, Mann et al. (2017) have examined the  
persistent episodes of extreme weather in the 
Northern Hemisphere summer that had been shown 
to be associated with the presence of high-amplitude 
quasi-stationary atmospheric Rossby waves3. They 
suggested a mechanism4 and provided evidence 
of an increase in the conditions favourable to the 
formulation of these extreme weather-associated 
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Figure 4. Spatial distribution of floods of losses of severity 
equal to or greater than 1.5 (from Kundzewicz et al., 2017).

2 The Atlantic multi-decadal variability (AMV) or oscillation (AMO) is a natural climate cycle involving changes in the sea surface temperature 
of the North Atlantic, which in turn is related to the likelihood of hurricane formation.

3 Rossby waves are the large meanders in high-altitude winds resulting from the rotation of the planet and which are associated with 
pressure systems and the jet stream.

4 The phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves.
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states, possibly linked to amplified Arctic warming 
and thus a climate change influence. Both models 
and observations suggest this signal has only recently 
emerged from the background noise of natural 
variability. It remains to be seen whether further 
observations will continue to support the mechanism 
proposed.

3.3. Attributing the contribution of climate change 
to specific extreme weather events

Historically, it has been difficult to analyse the 
contribution of anthropogenic warming on individual 
extreme weather events against the backdrop of 
natural variability. However, the increased sophistication 
of models and access to computing resources have 
allowed researchers to simulate the probability of 
specific weather events with and without the additional 
effects of climate change on temperature, atmospheric 
water content and other factors associated with 
warming (Diffenbaugh et al., 2017). Such studies are 
too numerous to review in this short update (see, for 
example, the annual analyses of extreme weather 
events by the American Meteorological Society (such 
as Herring et al., 2016)), and include those where an 
influence of climate change is not found. However, 
events where climate change is concluded to have 
increased the probability (in some cases substantially) of 
extreme events include the following: 

• Heatwaves in Australia (see, for example,  Perkins 
and Gibson, 2015; Hope et al., 2016; Black et al., 

2016); China (see, for example,  Sun et al., 2014) 
and Europe (see, for example,  Uhe et al., 2016; 
King et al., 2015);

• Increased risks of wildfires (see, for example,  Yoon 
et al., 2015; Abatzoglou and Williams, 2016);

• Extreme rainfall and associated floods (see, for 
example,  van de Wiel et al., 2017; Pall et al., 2011);

• Coastal flooding due to sea-level rise (see, for 
example,  Sweet et al., 2016).

4. Conclusion 

This update on some of the figures and underlying 
drivers of extreme weather raised in EASAC report 
number 22 (EASAC, 2013), confirms the earlier 
conclusions on the importance of increasing the 
adaptability of Europe’s infrastructure and social 
systems to a changing climate. However, evidence on 
AMOC and the effects of amplified Arctic warming 
continue to emerge from ongoing research and 
monitoring programmes. In view of the importance 
of these large-scale phenomena to Europe’s climate, 
EASAC will keep a watching brief on this and other 
findings to provide further updates in the future.
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Figure 5 Time series of the Atlantic flow (AMOC) in the two model variants: without correction (blue) and with correction 
(orange). In model year 201, the CO2 concentration in the model is doubled and then left at this level. Source: Liu et al., 2016.
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EASAC

EASAC – the European Academies’ Science Advisory Council – is formed by the national science academies 
of the EU Member States to enable them to collaborate with each other in giving advice to European policy-
makers. It thus provides a means for the collective voice of European science to be heard. EASAC was 
founded in 2001 at the Royal Swedish Academy of Sciences.

Its mission reflects the view of academies that science is central to many aspects of modern life and that an 
appreciation of the scientific dimension is a pre-requisite to wise policy-making. This view already underpins 
the work of many academies at national level. With the growing importance of the European Union as an 
arena for policy, academies recognise that the scope of their advisory functions needs to extend beyond the 
national to cover also the European level. Here it is often the case that a trans-European grouping can be 
more effective than a body from a single country. The academies of Europe have therefore formed EASAC so 
that they can speak with a common voice with the goal of building science into policy at EU level.

Through EASAC, the academies work together to provide independent, expert, evidence-based advice about 
the scientific aspects of public policy to those who make or influence policy within the European institutions. 
Drawing on the memberships and networks of the academies, EASAC accesses the best of European science 
in carrying out its work. Its views are vigorously independent of commercial or political bias, and it is open 
and transparent in its processes. EASAC aims to deliver advice that is comprehensible, relevant and timely.

EASAC covers all scientific and technical disciplines, and its experts are drawn from all the countries of the 
European Union. It is funded by the member academies and by contracts with interested bodies. The expert 
members of EASAC’s working groups give their time free of charge. EASAC has no commercial or business 
sponsors.

EASAC’s activities include substantive studies of the scientific aspects of policy issues, reviews and advice 
about specific policy documents, workshops aimed at identifying current scientific thinking about major 
policy issues or at briefing policy-makers, and short, timely statements on topical subjects.

The EASAC Council has 29 individual members – highly experienced scientists nominated one each by 
the national science academies of EU Member States, by the Academia Europaea and by ALLEA. The 
national science academies of Norway and Switzerland are also represented. The Council is supported by a 
professional Secretariat based at the Leopoldina, the German National Academy of Sciences, in Halle (Saale) 
and by a Brussels Office at the Royal Academies for Science and the Arts of Belgium. The Council agrees 
the initiation of projects, appoints members of working groups, reviews drafts and approves reports for 
publication.

To find out more about EASAC, visit the website – www.easac.eu – or contact the EASAC Secretariat at 
secretariat@easac.eu
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