

RUB

Rational design of cyanobacteria for hydrogen production

Renewables – *systems and storage* Stockholm, 2013-09-19

Sascha Rexroth

Vision: Renewable energy source

Nature's catalysts:

Photosystem 2 (PS2) Hydrogenase (H₂ase)

Whole cell instead of isolated catalyst RUB

- Protection & stabilization of catalysts and self-repair (especially light damaged PS2)
- Self reproduction of cellular system (& scaling up for mass culture...)
- PS-apparatus needed for H₂production (sun as "power supply")

RUB

H₂ production in green algae

- Advantage : Very high activity of FeFe-H₂ase (TOF \leq 10,000 s⁻¹)
- Problems : Anaerobic conditions (due to O₂-sensitivity of H₂ase) reduce PS-capacity to about 5 %
 - Genetic manipulation for O₂-tolerance mandatory

Objectives for economical Bio-H₂ production RUB (acc. LCA)

 Present H₂-production per L cell culture (~ 2 ml H₂ L⁻¹ h⁻¹) has to be increased by a factor ≥ 100

Continuous H₂-production under aerobic conditions (mass cultivation)

H.-J. Wagner RUB

Cyanobacteria – Ideal host organisms

- Extreme environments:
 - Open sea & desert
 - Hot springs & glaciers
- > 10.000 species known,
 > 100.000 unknown
- Mass culture
- Genetic transformability
- Homologous recombination
- Model organism:
 Synechocystis sp. PCC 6803

Potential for optimization

Phaeodactylum tricornutum (natural light conditions)

optimized light conditions (const. light intensity near Ek-value)

- Dissipation of energy as heat and fluorescence
- >50 % lost to photoprotection
- H₂ production growth independent
- > Significant part of energy available for H_2

Photosynthesis: Quantum efficiency & kinetics

• High efficiency of primary reaction \rightarrow reduced in subsequent steps

Fast "Light reactions" : Light capture in fs-rangeLimiting "Dark reactions" :PS-electron transport with TOF = $50 - 200 \text{ s}^{-1}$ TOF = 0.3 s^{-1} (Rubisco)

Conclusions:

- Direct coupling to primary events of PS for high efficiency !
- Tremendous over-capacity of PS light reactions should be used large energy loss due to dark reactions!

Strategy

Metabolic engineering

➢ H₂ producing cyanobacterial organism

Process engineering

 Reduction of investment (<10% of available systems)

Metabolic engineering

- Increase of linear electron transport
- Re-routing of electron transport
- Implementation of an engineered O₂-tolerant H₂-ase

Biomass Ψ H₂-production \uparrow

(by modulation of protein interactions & engineering of H_2 ase)

Increase of photosynthetic ET by PBS antenna reduction

PBS in Synechocystis

(Moal et al. 2012)

PBS antenna size reduction:

- a) Reduced photoinhibition –
 higher light tolerance
- b) Higher cell density in PBR
- c) Saving energy ($\leq 63\%$ sol. prot.)

Top view TM

PBS antenna size reduction

- ≤ 3-fold higher cell densities
- ≤ 4-fold higher light intensities tolerable

Bright Sunlight Heat dissipation

Impact on PS2 / PS1 ratio

≤ 6-fold increased linear ET due to increased PS2 / PS1

PS2/PS1

	Chl <i>a</i> per cell / fg	PS2 / % of WT	PS1 / % of WT	PS2 / PS1
WT	17.0	100	100	1:10
Olive	19.0	277	78	1:3
PAL	15.9	132	59	1:4

(collab. F. Mamedov, Uppsala University)

Photobioreactor design

Kwon, Rögner, Rexroth, J Biotechnol. 2012

batch

cont. culture

RUB

Measurement & Control:

- Media supply
- Illumination
- CO₂
- O₂
- pH
- LabVIEW interface

- Steady state characterization & optimization of design cells
- Long-term cultivation > 9 months

Monitoring metabolism by proteomics under steady state conditions

Photosynthesis proteins

- Increased PS2 content
- PAL: Redox stress \rightarrow Lack of electron sink

Stress indicator proteins

Photosynthetic productivity of PBS-mutants

Light intensity vs. O₂ evolution at steady-state conditions
 Conclusion:

"Olive"-antenna mutant has highest potential as basis for design cell: >150% activity of WT, higher light tolerance

Engineering photosynthetic electron transport

Partial uncoupling of ATP synthase

(collab. T. Hisabori, Tokyo Institute of Technology)

- High ΔpH has inhibitory effect on ET
- \succ Reduction of ΔpH across the thylakoid membrane

 ϵ -subunit in WT

trunc. ϵ in $\epsilon_{\Delta C}$

Effect of partial uncoupling

- ΔpH < 20%
- Cell growth unimpaired
- max. ET-rate ≈ doubled

Tuning of the FNR – Ferredoxin interaction

FNR-Fd interaction: key factor for re-routing of electron transport

- > Minimizing the transfer towards CO₂-fixation
 - ~ 90% of electrons towards carbon fixation in WT
 - Reduction of biomass \rightarrow increase of H₂ production

Engineering Ferredoxin interaction

- Definition of interaction interfaces based on crystal structures
- Rational design of different FNR variants
- Targeted mutation of interaction sites

T. Hase G. Kurisu (Osaka Univ.)

Minimizing CO₂ fixation

(K. Wiegand in collab. M. Winkler / T. Happe)

- FNR and HydA1 compete for ferredoxin
- Apparently distinctly higher affinity of ferredoxin for FNR
- Indication that tuning of ET by mutant FNR is possible

Coupling photosynthetic ET with engineered H₂ase

FeFe-H₂ase (*Chlamy*) : Design for O₂-tolerance

Anaerobic work station in tent

Directed evolution combined with high throughput screening...

T. Happe RUB

Overall strategy for engineering "design cell"

RUB Summary & outlook (design cell) CO₂ FNR **MutantsII** uncoupling antenna red. CO_2 -fix. O_2 -tolerance Present gain >6 (PS2 **1**) >2 (factor LET) Future 4-5 10-100 expectation

Conclusion: If all mutants are pooled in one design cell, >100x increase in H_2 -production can be achieved!

RUB

Development of photobioreactor

Optimization of reactor materials

- Use of industrial semi-manufactured products (cooperation with KSD Innovations GmbH)
- Investigation of biocompatibility (frequently toxic effects)

Photobioreactor

- Flat panel reactor (5 L, 40 mm light-path)
- Sterilization-In-Place
- Batch & continuous cultivation
- Invest. < 10 % of commercial reactors</p>

Scale-up

- Limitations for upscaling:
 - Light-penetration
 - Hydrostatic pressure
 - Mixing
- Significant upscaling by increasing number of reactor units

(Coop. KSD, Hattingen)

Specific net energy consumption per reactor volume

5 L

Impact factors over life cycle (100 L PBR)

- Operation >99 % (19 % process materials, 80 % process energy)
- Production & disposal <1%

Cumulated energy demand (CED) – operational phase

Conclusion:

Optimization potential in energy reduction for sterilization & illumination

Summary

➢ H₂ producing cyanobacterial organism

 Reduction of investment (<10% of available systems)

Acknowledgements RUB

Prof. Dr. Matthias Rögner

Dr. Gábor Bernát Dr. Martin Broekmans Dr. Jong-Hee Kwon Pasqual Liauw Nadine Waschewski Katrin Wiegand

Prof. Dr. T. Happe (Photobiotechnology)

Prof. Dr. H.-J. Wagner (LEE) Dr. V. Rosner (LEE)

Ext. coop. & funding

CyanoFactory (EU)

Uppsala University (UU) University of Applied Sciences Mittweida (UM) Instituto de Biologia Molecular e Celular (IBMC) Ruhr-University-Bochum (RUB) University of Ljubljana (UL) University of Sheffield (USFD) Universidad Politénica de Valencia (UPVLC) KSD Innovations GmbH (Hattingen) **CNR-ISE** (Firenze) M2M Engineering sas (Napoli)