Solar hydrogen storage

Solar energy conversion inspired by nature: Enzyme-hybrid systems in photocatalytic water splitting

Stockholm, Sweden

Erwin Reisner Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK e-mail: reisner@ch.cam.ac.uk web: http://www-reisner.ch.cam.ac.uk/

www.rsc.org/solar-fuels

Which fuel (energy storage)?

hydrocarbons

hydrogen

electricity

Which fuel (energy storage)?

Present: dirty Future: sustainable?

Present: dirty Future: sustainable?

Present: dirty Future: sustainable?

Which fuel (energy storage)?

Present: dirty Future: sustainable?

Present: dirty Future: sustainable?

Present: dirty Future: sustainable?

The generation of solar fuels: artificial photosynthesis

www.rsc.org/solar-fuels

About artificial photosynthesis: H₂ economy

About an Unsustainable Carbon-Cycle

About a Sustainable Carbon-Cycle: a Syngas Economy

Syngas is invaluable chemical feedstock for the petrochemical industry.

- Intermediary building block to liquid fuels, e.g. hydrocarbons (CD-Lab).
- Synthesis of fertilizers, plastics, pharmaceuticals, etc.

About a Sustainable Carbon-Cycle: a Syngas Economy

Overview: Inspired by Nature's High Performance Enzymes

The quest for inexpensive, efficient, durable and scalable catalysts!

State-of-the-art: Noble metals; e.g. Pt:

(i) expensive/limited resources

(*ii*) non-selective (at low potentials it is an excellent O_2 reduction catalyst)

(*iii*) poisoned by several inhibitors (e.g. CO, H_2S)

Nature's choice - enzymes

(*i*) can be 'grown' and non-toxic

(*ii*) certain enzymes operate in the presence of inhibitors as O₂, H₂ and CO

(iii) often no or negligible over-potentials - highly efficient catalysts

BUT: large foot-print per catalytic entity & fragile (*e.g.*, O₂-sensitive)

Overview Photocatalysis: Enzyme Hybrid Systems

Chem. Commun. **2009**, 550–552. *J. Am. Chem. Soc.* **2009**, *131*, 18457–18466. *Angew. Chem. Int. Ed.*, **2013**, *in press*.

J. Am. Chem. Soc., **2012**, *134*, 8332–8335. *J. Am. Chem. Soc.*, **2013**, *135*, 10610–10613.

Overview Photocatalysis: Synthetic Hybrid Systems

Chem. Commun. **2009**, 550–552. *J. Am. Chem. Soc.* **2009**, *131*, 18457–18466. *Angew. Chem. Int. Ed.*, **2013**, *in press.*

J. Am. Chem. Soc., **2012**, *134*, 8332–8335. *J. Am. Chem. Soc.*, **2013**, *135*, 10610–10613.

Chem. Commun., **2011,** *47*, 1695–1697. *Angew. Chem. Int. Ed.*, **2012**, *51*, 9381–9384. *Angew. Chem. Int. Ed.*, **2012**, *51*, 12749–12753. *Chem. Commun.*, **2013**, *in press.*

Chem. Sci., **2012**, *3*, 3482–3487. *Chem. Commun.*, **2013**, *49*, 4331–4333. *Chem. Eur. J.* **2013**, *in press*.

Overview Photocatalysis: Synthetic Hybrid Systems

Chem. Commun. **2009**, 550–552. *J. Am. Chem. Soc.* **2009**, 131, 18457–18466. *Angew. Chem. Int. Ed.*, **2013**, *in press.* H₂O Photosystem II Light

J. Am. Chem. Soc., **2012**, *134*, 8332–8335. *J. Am. Chem. Soc.*, **2013**, *135*, 10610–10613.

Chem. Commun., **2011,** *47*, 1695–1697. *Angew. Chem. Int. Ed.*, **2012**, *51*, 9381–9384. *Angew. Chem. Int. Ed.*, **2012**, *51*, 12749–12753. *Chem. Commun.*, **2013**, *in press*.

Chem. Sci., **2012**, *3*, 3482–3487. *Chem. Commun.*, **2013**, *49*, 4331–4333. *Chem. Eur. J.* **2013**, *in press*.

About Photocatalysis with Enzyme-modified TiO₂ Nanoparticles

 \rightarrow from 'light to electricity' (PV) to 'light to fuel' (solar fuel) conversion

Photocatalytic H₂ production with hydrogenases

H₂ production with *Desulfomicrobium baculatum* (*Db*) [NiFeSe]-H on dye-sensitised TiO₂

TEOA = triethanolamine

Cartoon representation of a hybrid (enzyme-TiO₂) nanoparticle system showing aspects that are desirable for efficient and practical H₂ production from sunlight.

Photocatalytic H₂ production with hydrogenases

Visible light driven CO_2 to CO conversion with CODH.

100% selectivity!

About Photoactivity under High O2 Levels with a Hydrogenase

Amount of H₂ generated with the EY-H₂ase system in an aqueous TEOA solution (150 mM, pH 7.0) during visible light irradiation (t_{irr}, 100 mW cm⁻², AM 1.5G, λ > 420 nm) at 25 °C. The EY-H₂ase system was exposed to different O₂ headspace concentrations after one h irradiation.

About Water Oxidation with Photosystem II

î PSII dimer: 11×21×11 nm³

mesoITO as substrate:

- Transparent
- 3D structure
- Hydrophilic

PSII from Thermosynechococcus elongatus

Electrochemical cell before and during irradiation.

Photocurrent responses (red light) with +0.5 V vs.NHE in aqueous pH 6.5 buffer solution at 25°C:

PSII-mesoITO:

 $i = 1.6 \pm 0.3 \ \mu \text{A cm}^{-2}$ TOF = 0.18 ± 0.04 (mol O₂) (mol PSII)⁻¹ s⁻¹

Direct ET from Q_A to mesoITO!

Q_A approximately 9Å from stromal protein surface

Acceleration of PSII TOF by direct ET from Q_A?

Diffusion of quinone QB from protein pocket to electron acceptor rate limiting in PSII and 10-fold slower than the slowest catalytic step.

Can we accelerate water oxidation in PSII in an artificial environment by hijacking electrons upstream at Q_A level?

Conclusion

"Developing the chemical toolbox for advanced photochemical systems"

Fuel generation: from enzymes to bio-inspired catalysis.

- Solar H₂ production and with enzyme-nanoparticle system
- Solar water oxidation with enzyme-modified metal oxide electrodes

Chemical

000

Materials

Biology

- Solar H₂ production with Co catalyst-nanoparticle system
- Solar water oxidation hybrid materials from molecular precursors

